NORWALK RIVER BASIN GEORGETOWN CONNECTICUT

FACTORY POND DAM CT 00217

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

The original hardcopy version of this report contains color photographs and/or drawing s. For additional information on this report please email

U.S. Army Corps of Engineers New England District Email: Library@nae02.usace.army.mil

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

JULY 1980

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTAT	ION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
I. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
CT 00217	ADA143519			
I. TITLE (and Subsisse)		5. TYPE OF REPORT & PERIOD COVERED		
Factory Pond Dam		INSPECTION REPORT		
NATIONAL PROGRAM FOR INSPECTION DAMS	OF NON-FEDERAL	6. PERFORMING ORG. REPORT NUMBER		
. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(#)		
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION				
PERFORMING ORGANIZATION NAME AND ADD	PRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
CONTROLLING OFFICE NAME AND ADDRESS DEPT. OF THE ARMY, CORPS OF ENGI	INEERS	12. REPORT DATE July 1980		
NEW ENGLAND DIVISÍON, NEDED 424 TRAPELO ROAD, WALTHAM, MA. (13. NUMBER OF PAGES 60			
4. MONITORING AGENCY NAME & ADDRESS(II di	illerent from Controlling Office)	15. SECURITY CLASS. (of this report)		
	UNCLASSIFIED			
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE			

16. DISTRIBUTION STATEMENT (of this Report)

APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by black number)

DAMS, INSPECTION, DAM SAFETY,

Norwalk River Basin Georgetown Conn. Factory Pond Dam

20. ABSTRACT (Continue on reverse side it necessary and identity by block number)
Factory Pond Dam is a combination of sheet piling/concrete fill and masonry that is approx. 175 ft. long and 18.75 ft. high. The sheet piling portion of the dam consists of two rows of piling, 5 ft. apart, filled with concrete. The assessment of the dam is based on the visual inspection, past operational performance and hydraulic/hydrologic computations. The dam is judged to be in fair condition with several areas that require attention. The dam is classified as small and has a high hazard potential in accordance with guidelines established by the Corps of Engineers.

FACTORY POND DAM CT 00217

NORWALK RIVER BASIN
GEORGETOWN, CONNECTICUT

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM

PHASE I INSPECTION REPORT

Identification Number:

Name:

Town:

County and State:

Stream:

Date of Inspection:

CT 00217

Factory Pond Dam

Redding

Fairfield County, Connecticut

Norwalk River April 23, 1980

BRIEF ASSESSMENT

Factory Pond Dam is a combination of sheet piling/concrete fill and masonry that is approximately 175 feet long and 18.75 feet high. The sheet piling portion of the dam consists of two rows of piling, 5 feet apart, filled with concrete. The spillway is located on the southern portion of the dam and consists of a 75-foot long masonry weir. There is a 5-foot diameter discharge pipe that passes through the dam and an adjacent factory. Inside this pipe is a turbine that was once used for water power, but is now only used as a valve. The drainage area is 12.2 square miles and the reservoir has 92 acre-feet of available storage.

The assessment of the dam is based on the visual inspection, past operational performance and hydraulic/hydrologic computations. The dam is judged to be in fair condition with several areas that require attention. These areas include seepage in the vicinity of the west abutment of the spillway, concrete that needs repairing and masonry that needs repointing.

The dam is classified as small and has a high hazard potential in accordance with guidelines established by the Corps of Engineers. The test flood for this dam is 1/2 the Probable Maximum Flood (PMF). The test flood inflow is 9,640 °cfs and the routed test flood outflow is 8,250 cfs. The test flood will overtop the dam by 4.25 feet.

It is recommended that the owner engage the services of a qualified registered engineer experienced in the design of dams to investigate the seepage through the dam and prepare a detailed hydraulic/hydrologic study to determine the spillway's adequacy.

Additional recommendations and remedial measures are included in Section 7 and should be implemented within one year after receipt of this Phase I Inspection Report.

Joseph F. Merluzzo

Connecticut P.E. #7639

Project Manager

Gary // Giroux

Connecticut P.E. #11477

Project Engineer

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Inspections. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Inspection is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Inspection; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Test Flood is based on the estimated Probable Maximum Flood for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and variety of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Inspection does not include an assessment of the need for fences, gates, "no trespassing" signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with Occupational Safety and Hazard Administration's (OSHA) rules and regulations is also excluded.

TABLE OF CONTENTS

																									Page
Brie Revi Pref Table Over	f Ass ew Boa ace . e of (Photo	nt ige			•	•	•	• •	•	•	•	•	•	•	•	•	•	•		•	•		•	i ii-iv
Sect	ion					•											•								,*
1.	PROJ	ECT IN	FORMA	TION																					
	1.1	Gener	al.			•						•		•						•			•	•	1
		a. b.	Autho Purpo	ority ose o	f İ	ns;	pec	ti	on	•	•					•		•	•			•	•	•	1
	1.2	Descr	riptio	on of	Pr	oje	ect				•	•			•			•	•			•		•	1
		a. b. c. d. e. f. g. h. i.	Locat Descr Size Hazar Owner Opera Purpo Desig Norma	ription Class of Clast of Class of Class of Class of Class of Class of Class of Clas	on sif ass f D	of ica if	Da ati ica	m on ti	and on tic	l A	pp Hi	uri	ter	: : :	·	· · · · · · · · · · · · · · · · · · ·		• • • • • • •			•		•	•	1 2 2 2 3 3 3 3
	1.3	Perti	inent	Data	•	•	•			•	•	•	•		•	•	•	•	•	•	•	•	•	•	3
2.	ENGI	NEERIN	NG DAT	ГА																					
	2.1	Desig	ın Dat	ta .		•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	8
	2.2	Const	tructi	ion Da	ata	•	•	•		•	•	•	٠,	•	•	•		•	•		•	•	•	•	8
	2.3	0pera	ation	Data	٠.	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
	2.4	Evalu	uation	of)a t	a	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
3.	VISU	AL INS	SPECTI	ON																					
	3.1	Findi	ings			•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
		a. b. c. d. e.	Gener Dam Appur Reser Downs	tena voir	nt Ar	Sti ea	ruc	tu	res	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9 9 9 10

Sect	tion		<u>Page</u>
•	3.2	Evaluation	10
4.	, i	ATIONAL AND MAINTENANCE PROCEDURES	
4.			11
	4.1	Operational Procedures	11
		a. General	11 11
	4.2	Maintenance Procedures	11
		a. General	11 11
	4.3	Evaluation	11
5.	EVAL	UATION OF HYDRAULIC/HYDROLOGIC FEATURES	
	5.1	General	12
	5.2	Design Data	12
	5.3	Experience Data	12
	5.4	Test Flood Analysis	13
	5.5	Dam Failure Analysis	13
6.	EVAL	UATION OF STRUCTURAL STABILITY	
	6.1	Visual Observations	15
	6.2	Design and Construction Data	15
	6.3	Post-Construction Changes	15
	6.4	Seismic Stability	15
7.	ASSE	SSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	
	7.1	Dam Assessment	16
		a. Condition	16 16 16
	7.2	Recommendations	16

Section	<u>Page</u>
7.3 Remedial Measures · · · · · · · · · · · · · · · · · · ·	16
a. Operation and Maintenance Procedures	16
7.4 Alternatives	17
APPENDICES	
APPENDIX A - Inspection Checklist	
APPENDIX B - Engineering Data	
APPENDIX C - Photographs	
APPENDIX D - Hydrologic and Hydraulic Computations	
APPENDIX E - Information as Contained in the National Inventory of Dams	

*

FACTORY POND DAM

QUADRANGLE: BETHEL, CT

US ARMY, CORPS OF ENGINEERS
NEW ENGLAND DIVISION
WALTHAM, MASS.

PHASE I INSPECTION REPORT FACTORY POND DAM CT 00271

SECTION 1 - PROJECT INFORMATION

1.1 General

- a. Authority Public Law 92-367, August 8, 1972 authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspections throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Storch Engineers has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Storch Engineers under a letter of March 6, 1980 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0035 has been assigned by the Corps of Engineers for this work.
 - b. Purpose of Inspection -
- (1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.
- (2) Encourage and prepare the states to initiate quickly effective dam safety programs for non-Federal dams.
 - (3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location - Factory Pond Dam is located approximately 1,200 feet north of the Route 57 and Route 107 interchange and east of Route 7 in the Georgetown

section of the Town of Redding, Connecticut (See Location Map). The coordinates of the dam are approximately 41°-15.5' north latitude and 73°-26' west longitude. The dam is located on the Norwalk River in the Norwalk River Basin.

b. Description of Dam and Appurtenances - Factory Pond Dam is a combination of sheet piling/concrete fill and masonry that is 175 feet long and 18.75 feet high. The sheet piling portion of the dam consists of two rows of sheet piling spaced 5 feet apart, with concrete fill in between. The sheet piling extends to 20 feet below the top of the dam.

The spillway is a stone masonry weir with an ogee section that is 75 feet long. The top of the dam is 4.65 feet above the spillway crest. The spillway is located on the southern portion of the dam adjacent to a factory building. There is a 10-foot downstream apron with the remainder of the channel being riprap.

There is a 5-foot diameter discharge conduit that is used to lower the pond for repairs to the dam. This conduit has a variable pitch blade turbine in it that was once used for water power. Presently, the turbine is not used for power but the blades are used as a control valve. Control of the blades is from inside the factory.

- c. Size Classification Factory Pond Dam has a maximum height of 18.75 feet and a maximum storage of 192 acre-feet at the top of the dam. In accordance with the <u>Recommended Guidelines for Safety Inspection of Dams</u> established by the Corps of Engineers, the dam is classified as intermediate (height less than 40 feet and storage less than 1,000 acre-feet).
- d. Hazard Classification Factory Pond Dam is classified as having a high hazard potential. Failure of the dam could result in the loss of more than a few lives and cause significant property damage. Approximately 50 feet

downstream is a Gilbert & Bennett manufactoring building built immediately over the river. Estimated flow and water depths just prior to dam failure at this location is 2,500 cfs at 8.5 feet and just after dam failure is 5,710 cfs at 22 feet.

e. Ownership - The Factory Pond Dam is owned by:

Gilbert & Bennett Georgetown, Connecticut

f. Operator - The person in charge of day-to-day operation of the dam is:

Mr. Dom Curtis Gilbert & Bennett Georgetown, Connecticut (203) 544-8323

- g. Purpose of Dam The dam impounds the Factory Pond which serves as a primary water supply for industrial use by Gilbert & Bennett.
- h. Design and Construction History There are no design computations or drawings available for the original dam. During the Flood of "55", the dam was damaged as a result of water flowing through a low spot in the area of the west abutment. The water never overtopped the dam. The dam was reconstructed in 1956. Drawings are available for this reconstruction. Essentially, this reconstruction was of the western abutment, which is now sheet piling/concrete fill. The design was done by Industrial Associates, Inc., Philadelphia, Pennsylvania. In 1968, the masonry face was gunited.
- i. Normal Operational Procedure There is a regular maintenance staff at the plant that takes care of the dam. The water level of the pond is lowered if a major storm is imminent.

1.3 Pertinent Data

a. Drainage Area - Factory Pond drainage basin is in the Towns of Ridgefield, Redding, Wilton and Weston and is irregular in shape. The area of

the drainage basin is 12.2 square miles (Appendix D - Plate 3). Approximately 10 percent of the drainage basin is natural storage and more than 80 percent is undeveloped. The topography is rolling with elevations ranging from 840 (NGVD) to 329 (NGVD) at the spillway crest.

b. Discharge at Damsite - There are no records available for discharge at the dam.

(1)	Outlet works (conduit) size:	60 inches
	Invert elevation (feet above NGVD):	319
	Discharge Capacity at top of dam:	40 cfs
(2)	Maximum known flood at damsite:	4,800 cfs
(3)	Ungated spillway capacity at top of dam:	2,500 cfs
	Elevation (NGVD):	333.65
(4)	Ungated spillway capacity at test	
	flood elevation:	6,700 cfs
	Elevation (NGVD):	337.9
(5)	Gated spillway capacity at normal pool	
	elevation:	N/A
	Elevation (NGVD):	N/A
(6)	Gated spillway capacity at test flood	
	elevation:	N/A
	Elevation:	N/A
(7)	Total spillway capacity at test flood	
	elevation:	6,700 cfs
	Elevation	337.9
(8)	Total project discharge at top of dam:	2,540 cfs
	Elevation (NGVD):	333.65

	(9)	Total project discharge at test flood	
		elevation:	8,250 cfs
*		Elevation (NGVD):	337.9
с.	Eleva	ation (feet above NGVD)	
	(1)	Streambed at toe of dam:	314.9
	(2)	Bottom of cutoff:	313.65
	(3)	Maximum tailwater:	323.4
	(4)	Normal pool:	329
	(5)	Full flood control pool:	N/A
	(6)	Spillway crest (ungated):	329
	(7)	Design surcharge (original design):	unknown
	(8)	Top of dam:	333.65
	(9)	Test flood surcharge:	337.9
d.	Rese	rvoir (length in feet)	
	(1)	Normal pool:	1,700
	(2)	Flood control pool:	N/A
	(3)	Spillway crest pool:	1,700
	(4)	Top of dam:	1,800
	(5)	Test flood pool:	2,000
e.	Store	age (acre-feet)	
	(1)	Normal pool:	100
	(2)	Flood control pool:	N/A
	(3)	Spillway crest pool:	100
	(4)	Top of dam:	192
	(5)	Test flood pool:	282
f.	Rese	rvoir Surface (acres)	
	(1)	Normal pool:	16.5

	(2)	Flood control pool:	N/A
	(3)	Spillway crest:	16.5
	(4)	Test flood pool:	23
	(5)	Top of dam:	20
g.	Dam		
	(1)	Type:	sheet piling/concrete
			fill & stone masonry
	(2)	Length:	175
	(3)	Height:	18.75
	(4)	Top width:	5 feet
	(5)	Side slopes:	vertical
	(6)	Zoning:	unknown
	(7)	Impervious core:	N/A
	(8)	Cutoff:	sheet piling down to
			elevation 313.65 (NGVD)
	(9)	Grout curtain:	unknown
	(10)	Other:	N/A
h.	Dive	ersion and Regulating Tunnel	N/A
i.	Spil	lway	
	(1)	Type:	stone masonry weir/ogee
	(2)	Length of weir:	75 feet
	(3)	Crest elevation (without flashboard):	329
	(4)	Gates:	N/A
	(5)	U/S channel:	no channel-natural
			pond bottom
	(6)	D/S channel:	concrete apron and
			riprapped channel

(7) General:

N/A

j. Regulating Outlets

(1) Invert elevation (NGVD):

319

(2) Size:

60 inches

(3) Description:

cast iron pipe

(4) Control Mechanism

manually operated gate

(5) Other:

valve is the variable

pitch blades of the

turbine

2.1 Design Data

There are no design computations or drawings for the original dam. However, there are drawings for the reconstructed portion of the dam that was damaged during the Flood of October, 1955. These drawings were prepared by Industrial Associates, Inc. of Philadelphia, Pennsylvania (See Appendix B).

2.2 Construction Data

No records are available for the original construction or the reconstruction. Drawings for the reconstruction are available (Appendix B).

2.3 Operation Data

The gate for the 5-foot diameter discharge conduit is operable and it is exercised periodically to lower the pond. Also, when the threat of a major storm is imminent, the pond is lowered.

2.4 Evaluation of Data

- a. Availability There were no computations available, however, there are some drawings available. These drawings are available from the Department of Environmental Protection (DEP).
- b. Adequacy The information made available along with the visual inspection, past performance history and hydraulic/hydrologic assumptions were adequate to assess the condition of the facility.
- c. Validity Due to the lack of available data, the conclusions and recommendations found in this report are based on the visual inspection and hydraulic/hydrologic computations.

3.1 Findings

a. General - The visual inspection was conducted on April 23, 1980 by members of the engineering staff of Storch Engineers, D. Baugh and Associates, Inc. and Matthews Associates with the help of Mr. Peter Harco and Dom Curtis of Gilbert & Bennett. A copy of the visual inspection check list is contained in Appendix A of this report. Selected photos of the dam and appurtenant structures are contained in Appendix C.

In general, the overall appearance and condition of the facility and its appurtenant structures is fair.

- b. Dam The dam is a combination of sheet piling/concrete fill and masonry. The sheet piling and concrete fill are in good condition (Photo 1). The sheet piling is painted with some areas that are rusting. The concrete cap is in good condition with no cracking (Photo 3). There is no evidence of settlement or lateral movement. There are some areas along the toe where vegetation is growing (Photo 1). The masonry portion of the dam is fair with some joints in need of repointing (Photo 8).
- c. Appurtenant Structures The inlet to the discharge conduit is protected by a bar screen which is in good condition. The discharge conduit itself was underwater and could not be inspected (Photo 8). The conduit contains a power turbine which is not used. The control for this conduit is by varying the pitch on the blades of the turbine. The gate is operable and the conduit was in use at the time of inspection.

The spillway is a fixed weir that appears to be in fair condition (Photos 2 and 5). The downstream training wall and western abutment (Photos 1 and 6) show some seepage and cracks.

- d. Reservoir Area The area immediately adjacent to the facility is gently sloped and in a natural state. The shoreline shows no signs of sloughing or erosion. There is some development adjacent to the reservoir, which is in the form of warehouses owned by Gilbert & Bennett. A rapid rise in the water level of the reservoir will not endanger any life or property.
- e. Downstream Channel The channel from the spillway is confined by buildings and many bridges (Photos 3, 4 and 7). It is a stone lined, but its capacity is questionable. Immediately downstream, the channel passes under a building (Photo 4). Under a large flow, the pier shown in the picture and the building may be destroyed.

3.2 Evaluation

Overall, the general condition of the dam is fair. The visual inspection revealed items that lead to this assessment, and apparent areas of distress such as:

a. Seepage through the abutment.

١

- b. Need for repointing of the masonry.
- c. Vegetation along the toe of the dam.

4.1 Operational Procedures

- a. General The operation of this facility is strictly for the purpose of industrial use, and the water level is kept as full as possible. Water for industrial use is pumped out. The pond is lowered once a year when manufacturing operations are shut down.
- b. Description of Any Warning System in Effect The only formal operating procedure is when there is a threat of a substantial storm. When this occurs, the gate to the 5-foot diameter conduit is opened and the water level in the pond is lowered (5 feet in 24 hours). There is no system for warning downstream inhabitants.

4.2 Maintenance Procedures

١

- a. General The pond is drained each year during the manufacturing shut down. At this time, the mortar is repaired and the cracks are filled.
- b. Operating Facilities The gate to the 5-foot discharge conduit was taken apart and refurbished approximately ten years ago.

4.3 Evaluation

The dam is maintained on an annual basis. Although they do lower the pond prior to a major storm, there should be a formal warning system for downstream flooding.

5.1 General

Factory Pond Dam is a sheet piling/concrete fill and masonry dam approximately 175 feet long and 18.75 feet high. The spillway is a masonry weir, 75 feet long. The 5-foot diameter conduit is used to lower the pond before a major storm and according to maintenance personnel, it takes 24 hours to lower the pond 5 feet (14.2 acres x 5.0 feet ÷ 24 hours = 35.8 cfs). Compared to the test flood, this flow is small. Therefore, this conduit is not in the hydrologic analysis.

The watershed encompasses 12.2 square miles and is 80 percent undeveloped. The topography is rolling with the terrain rising 511 feet from the spillway crest.

The pond has a total capacity of 192 acre-feet when the pond is at the top of the embankment and 100 acre-feet at the spillway crest. Therefore, there is approximately 92 acre-feet of storage available. The test flood outflow for this dam is 8,250 cfs and the spillway capacity is 2,500 cfs or approximately 30% of the test flood outflow.

5.2 Design Data

No design data is available.

5.3 Experience Data

Factory Pond Dam has experienced all the major storms of the 1930's and 1950's and most recently January, 1979. The flood of record resulted from the storm of October, 1955. The discharge at the site was approximately 4,800 cfs and the western portion of the dam was damaged, resulting in its reconstruction.

5.4 Test Flood Analysis

Based on the guidelines found in the <u>Recommended Guidelines for Safety Inspection of Dams</u>, the dam is classified as a small structure with a high hazard potential. The test flood for these conditions ranges from 1/2 the Probable Maximum Flood (PMF) to the PMF. One half the PMF was used for this dam because of the small size.

Using the guide curves established by the Corps of Engineers (rolling terrain), the test flood inflow is 9,640 cfs. The routing procedure established by the Corps gives an approximate outflow of 8,250 cfs. The spillway capacity is approximately 2,500 cfs or approximately 30% of the test flood outflow. The test flood will overtop the dam by approximately 4.3 feet. The building over the spillway (Photos 1 and 2) will not affect the test flood outflow.

Storage behind the dam was assumed to begin at the spillway crest.

Storage was determined by an average area depth analysis. Capacity curves for the spillway assumed weir flow.

5.5 Dam Failure Analysis

A dam failure analysis was performed using the <u>Rule of Thumb</u> method in accordance with guidelines established by the Corps of Engineers. Failure was assumed to occur when the water level in the reservoir was at the top of the dam.

The spillway discharge just prior to dam failure is 2,500 cfs and will produce a depth of flow of approximately 8.5 feet immediately downstream (at Gilbert & Bennett's building over the channel) from the dam. The calculated dam failure discharge is 5,710 cfs and will produce a depth of flow of approximately 22 feet immediately downstream from the dam or an increase in water

depth at failure of approximately 13.5 feet. The failure analysis covered a distance of approximately 1,000 feet downstream where the depth of flow was calculated to be 4.5 feet.

Failure of Factory Pond Dam may result in the loss of more than a few lives and the flood wave will destroy portions of the Gilbert & Bennett Factory which was constructed over the river 50 feet downstream. Also at least two dwellings located approximately 1,500 feet downstream will sustain some damage.

6.1 Visual Observations

The general structural stability of the dam is good as evidenced by the vertical, horizontal and lateral alignment. The mortared stone spillway is in fair condition with some cracks in the concrete at the westerly end. The steel sheet piling is in good condition.

The only area of concern is at the western abutment/training wall where there is some cracking and some seepage. This seepage, at the time of inspection, was negligible.

6.2 Design and Construction Data

The original design and construction data are not available. There are construction drawings available for the reconstruction of the dam.

6.3 Post-Construction Changes

Since the reconstruction of the dam, the only changes, except for minor maintenance work, are the guniting of the stone masonry face of the spillway in 1968 and the addition of the covered passageway over the dam (Appendix B - Plate 1). One of the piers for this passageway was constructed across the outlet channel. This outlet channel has since ceased to function.

6.4 Seismic Stability

The dam is located in Seismic Zone 1 and in accordance with Recommended Phase I Guidelines does not warrant a seismic analysis.

7.1 Dam Assessment

- a. Condition After consideration of the available information, the results of the inspection, contact with the owner and hydraulic/hydrologic computations, the general condition of the Factory Pond Dam is fair.
- b. Adequacy of Information The information available is such that an assessment of the safety of the dam should be based on the available data, the visual inspection results, past operational performance of the dam and its appurtenant structures and computations developed for this report.
- c. Urgency It is considered that the recommendations suggested below be implemented within one year after receipt of this Phase I Inspection Report.

7.2 Recommendations

The following recommendations should be carried out under the direction of a qualified registered engineer.

- a. Seepage through the spillway abutment should be investigated further to determine its origin and monitored to determine any changes.
- b. Prepare a detailed hydraulic/hydrologic study to determine spillway adequacy and an increase of the total project discharge if necessary.

7.3 Remedial Measures

- a. Operation and Maintenance Procedures -
- (1) Repair all cracks and mortar all joints in the masonry portion of the dam.
- (2) Vegetation along the toe of the dam should be removed. This will facilitate the visual observation of existing and potential seepage.

- (3) Plans for around-the-clock surveillance should be developed for periods of unusually heavy rains and a formal warning system should be put into operation for use in the event of an emergency.
 - (4) A program of annual technical inspection should be established.

7.4 Alternatives

None.

Information pertaining to the history, maintenance and modification to Factory Pond Dam as well as copies of past reports are located at:

State of Connecticut
Department of Environmental Protection
Water Resources Unit
State Office Building
Hartford, Connecticut 06115

APPENDIX A

INSPECTION CHECK LIST

INSPECTION CHECK LIST PARTY ORGANIZATION

PROJ	ECT_ FACTORY POND DAM		DATE 4/23/80	
			TIME 9:00 a.m.	
	·		WEATHER Clear	
	,		W.S. ELEV.	u.sdn.s.
PARI	<u>*</u> :			• "
1	John F. Schearer , SE Civil	_ 6	Peter Har∞ Gilbert	& Bennett
2	John Pozzato , MA Mech.	7		
3	Kenneth J. Pudeler, SE Civil	8		
4	Michael Haire , DBA Struct/Geo.			
5	Peter Austin . DBA Civil			
	PROJECT FEATURE	•	INSPECTED BY	. REMARKS
1		· · · · · · · · · · · · · · · · · · ·		
2.				•
3.				•
4.			•	
.5.				
6.				
7.	,			
8.				
	· · · · · · · · · · · · · · · · · · ·			
į.				
	· · · ·			

INSPECTION CHECK LIST FACTORY POND DAM 4/23/80 PROJECT DATE PROJECT FEATURE NAME DISCIPLINE NAME AREA EVALUATED CONDITIONS DAM EMBANKMENT · Crest Elevation Fair Current Pool Elevation Fair Maximum Impoundment to Date Never overtopped Surface Cracks ' Few (minor) Pavement Condition N/A Movement or Settlement of Crest None observed Overall-good; Lateral Movement Vertical Alignment Good Good Horizontal Alignment Condition at Abutment and at Concrete Cracked joints noted in spillway side abutment Structures Indications of Movement of Structural None Items on Slopes Trespassing on Slopes Not allowed Vegitation on Slopes None Sloughing or Erosion of Slopes or None Abutments Rock Slope Protection - Riprap Failures N/A Unusual Movement or Cracking at or None Dear Toes Negligable Unusual Embankment or Downstream Seepage Piping or Boils None Foundation Drainage Features None Toe Drains None None Instrumentation System A-2

INSPECTION CHECK LIST						
FROJECT FACTORY POND DAM	DATE 4/23/80					
FROJECT FEATURE	KAME					
DISCIPLINE	rave					
	·					
AREA EVALUATED	CONDITION					
CUTLET WORKS - INTAKE CHAIREL AND INTAKE STRUCTURE						
a. Approach Channel						
Slope Conditions	Good					
Bottom Conditions	Good ·					
Rock Slides or Falls	None .					
Log Boom	Good condition (spans pond)					
Debris	Negligable (periodically cleaned out)					
Condition of Concrete Lining	None observed					
Drains or Weep Holes	None .					
b. Intake Structure	·					
Condition of Concrete	Good					
Stop Logs and Slots	Good					
	·					
·						
,						
•						
÷	·					

INSPECT	IDN CHECK LIET
	DATE 4/23/80
PROJECT FEATURE	MAME
DISCIPLINE	NAME
	,
àrea evaluated	CONDITION
OUTLET WORKS - CONTROL TOWER .	N/A
a. Concrete and Structural	
General Condition	•
Condition of Joints	
Spalling	
Visible Reinforcing	
Rusting or Staining of Concrete	
Any Seepage or Efflorescence	·
Joint Alignment	
Unusual Seepage or Leaks in Gate Chamber	
Cracks	
Rusting or Corrosion of Steel	
b. Mechanical and Electrical	
Air Vents	None
Float Wells	None .
Crane Hoist	None
Elevator	None
Hydraulic System	None
Service Gates	1-5' Penstock, Hand-operated worm gear -
Emergency Gates	good condition. Process water used by factory: valve pit
Lightning Protection System	& 10" hand valve - good condition None
Emergency Power System	None .
Wiring and Lighting System in Gate Chamber A-4	Within factory bldg., in good condition

Inspect	PION CHECK LIST
PROJECT FACTORY POND DAM .	DATE 4/23/80
PROJECT FEATURE	NAME
DISCIPLINE	KAME
AREA EVALUATED	CONDITION
OUTLET WORKS - TRANSITION AND CONDUIT	Inaccessable
General Condition of Concrete	n
Rust or Staining on Concrete	11
Spalling	11
Erosion or Cavitation	n .
Cracking	II .
Alignment of Monoliths	11
Alignment of Joints	п
Numbering of Monoliths	n
	·
	· ·
,	
	,
·	
	·
A-5	· L

Inspection check list					
PROJECT FACTORY POND DAM	. DATE 4/23/80				
PROJECT FEATURE	NAVE				
DISCIPLINE	name				
· · · · · · · · · · · · · · · · · · ·	•				
AREA EVALUATED	CONDITION				
OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL					
Stone masonry General Condition of Generals	Fair				
Rust or Staining	N/A				
Spalling	None				
Erosion or Cavitation	None				
Visible Reinforcing	None				
Any Seepage or Efflorescence	None				
Condition at Joints	Fair				
Drain holes	Fair .				
Channel					
Loose Rock or Trees Overhanging Channel	None				
Condition of Discharge Channel	Good				
•					
·	, and the second				

A-6

	on Check List
PROJECT FACTORY POND DAM	DATE 4/23/80
PROJECT FEATURE	NAME
DISCIPLINE	NAME
	· .
AREA EVALUATED	CONDITION
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANGELS	
a. Approach Channel :	
General Condition	Underwater
Loose Rock Overhanging Channel	None
Trees Overhanging Channel	None
Floor of Approach Channel	Silted, otherwise good
b. Weir and Training Walls	
General Condition of Concrete	Good, but mortared joints on westerly training wall and abutting weir conc.
Rust or Staining	training wall and abutting weir conc. cracked. None
Spelling	None None
Any Visible Reinforcing	None
Ary Seepage or Efflorescence	Minor - westerly training wall/abutment
Drain Holes	None
c. Discharge Channel	·
General Condition	Fair
Losse Rock Overhanging Channel	None
Trees Overhanging Channel	None
Floor of Channel	Good
Other Obstructions	Several walkway bridges and buildings overhang the channel
	1.

Dispec	TION CHECK LIST
PROJECT FACTORY POND DAM	. DATE 4/23/80
PROJECT FEATURE	KAME
DISCIPLEE	RAME
AREA EVALUATED	CONDITION
OUTIET WORKS - SERVICE BRIDGE	N/A
a. Super Structure	
Bearings	
Anchor Bolts	
Bridge Seat	
Longitudinal Members	
Under Side of Deck	
Secondary Bracing	
Deck	
Dreinage System	
Railings	·
Expansion Joints	
Paint	
b. Abutment & Piers	·
General Condition of Concrete	
Alignment of Abutment	·
· Approach to Bridge	
Condition of Seat & Backwall	•
·	
	·

A-8

APPENDIX B

ENGINEERING DATA

New York License 4788 Connecticut Registration 4 JOSEPH W. CONE
CIVIL ENGINEER
124 HAVEMEYER PLACE
GREENWICH, CONNECTICUT

	RECEIVED
	MAY 23 1963
l	ANSWERED
L	REFERRED.
L	FILED.

TELEPHONE
TOWNSEND 9-2152

May 21, 1963

Mr. Emitt A. Dell, Field Inspector Water Resources Commission State Office Building Hartford 15, Conn.

Re: Dam #1 Norwalk River Gilbert & Bennett, Mfg. Co.

Dear Mr. Dell:

As requested, I inspected the above captioned dam on May 8, 1963. Many material changes have been made since I last saw the dam on August 13, 1957, when I read the weir gauge at the leak and estimated total flow at about 400,000 g.p.d. with FL in pond down about 6. On May 8, 63 flow appeared to be greater than on August 13, 57 and I estimated flow at about 500,000 g.p.d., including small flows near west abutment of spillway. Flow at main leak shows in photo #2 enclosed.

More important reference correspondence

- (1) Dec. 23 158 Cone to Wise
- (2) Jan. 9 159 Mulliken to Wise
- (3) Feb. 1 '61 " " "
- (4) Feb. 8 161 Cone ** " re (3)

The material changes are shown very approximately on the enclosed photo of a topo sheet and not to scale.

Nos. 1 & 2 - New buildings

No. 3 - Channel widening and under old buildings.

Do not know increased area. But this has

no particular relation with safety of dam.

- Several piers are in channel for future building construction.
- No. 4 Combined retaining and training wall; retaining to hold fill and presumably future building; training to direct flow lines from sluice gate.
- No. 5 Drive through gate in fence from upper level El. 104.5¹, datum spillway crest at 100.0, to lower level at building (2).
- No. 6 Leaks in sluice gate chute and at west end of dam to be corrected.
- No. 7 Suggest walls be raised as noted hereinafter.
- No. 8 Entire area has been raised several feet above El. 104.5 by material excavated for new building at (2).
- No. 9 Leaks at west end.

In addition: (a) Channel through grounds has been improved; (b) New bridge with greater waterway area at Route #465; (c) New twin box culvert added at new road Route #53.

Incidentally, I understand that new waterways at Route #465 and Route #53 will pass at least 2200 cfs with the usual clearance requirement of 2' between design flood water surface and underside of deck. The combination of

old and new box culverts at Route #53 under severe flood conditions can pass about 4000 cfs with H of 3' and Vm less than 10.

I would observe that design flood flow for passing floods through a valley is an entirely different matter than design flood flow for a dam; design for the one is influenced largely by the B-C ratio (benefit to cost); the design for a dam is imperatively concerned with safety.

Leak. The leak at and near the sluiceway of about 500,000 g.p.d. could become a serious matter and cause failure of the westerly portion of the dam. Leaks must be controlled; therefore Recommendation No. 2.

A weir was installed in August 1957 to determine whether or not flow varied with changes in flow line of pond. The plant superintendent said he would have his plant carpenter note readings on the gauge and report to me. I instructed the carpenter how to measure from a mark on the gauge to water surface. No readings were furnished me. I did take one reading on Aug. 13, 1963.

Sheet Piling. Top of piling as shown on photo #1 averages over 1 foot below top of west masonry abutment and wall. I understand piles were 20° long and are tied to anchors and therefore are at minimum depth in original ground. Steel will deteriorate in about twenty years to

a condition requiring filling sluiceway with solid concrete to protect west end of main dam. Conditions must be checked periodically.

Conditions Now. Again referring to photo #1. This photo was taken from top of training wall at bend in same. The wall does not show in the left portion of the photo but it does reinforce toe of pavement to the extent that there is less likelihood of piling kicking out when dam is overtopped and scouring takes place. Also concrete, shown in photo to left of pipe, tends to reinforce paving.

jecting abutment wall. There are small leaks here and some stone in base moved. This area should be reinforced with massive concrete; therefore Recommendation No. 3.

Spillway. The old spillway could pass approximately 1100 cfs without serious overtopping. My estimate is that flood of October '55 was at least 4000 cfs at the dam. I was told there was only minor flow over east abutment in '53. Therefore the west end of dam must have failed at a flow of 1100 cfs or less or at less than one third of probable maximum flow.

Cone's letter (1) Dec. 23 '58 recommended among other matters --- "(3) Extend the overflow masonry dam to full width of the valley".

Mulliken's letter (3) Feb. 1 '61. "We recently developed a scheme to construct additional spillway capacity to the west of our present dam----". And "As soon as a drawing has been completed, we will send you a copy for your preliminary study---". I have never seen such plan.

This extension of the spillway would have provided a total capacity of over 4200 cfs with present H of 4.6 and new length 130° effective (Q = 3.4 x 130 x $4.6^{3/2}$ (9.8) = 4230 cfs). And with H = 6 - 6500 cfs.

But the new building, walls, drives, etc. at #2 have most effectively checkmated this proposed solution which was practical and safe. Consequently I suggest raising all abutment walls to provide H = 7 as shown in recommendations.

As for the proposed diversion canal and conduits, this proposal is also blocked. However I always considered this a pipe-dream and not to be considered seriously.

It is my opinion that if additional spillway capacity is not provided the westerly portion of the dam will again fail due to overtopping and consequential scouring during a major flood.

I would remark that whatever Q was in October 1955 a future storm, in about 25 years, identical in every characteristic with 1955 storm would produce a much greater Q even up to 25%, because of:- (a) More intensive land use; (b) New bridges and culverts with greater waterway, thereby reducing valley storage; (c) Encroachment on and filling low areas, thereby again reducing valley storage; (d) Draining low areas.

I do not presently recommend an order to remove the dam once and for all, economic and other implications are evident.

I do recommend an order to make the corrections enumerated below or others of equivalent performance.

- (1) Owner furnish a map of conditions as they now are, showing in plan and elevations complete information. Particular reference to building (1) and old buildings and walls at (7). I have never seen a plan of this dam.
- (2) Effectively stop leaks at (9) west end of dam by grouting or otherwise.
- (3) When pipe at leaks has been completed and leaks stopped, place huge block of concrete between training wall and end of sluiceway and against bottom of spillway west abutment to reinforce same.

- (4) Raise walls at (7), to not less than
 El. 7.0 (west abutment and walls protecting old building) this means
 raising about 2.5° minimum.
- (5) Uncover and measure upstream face of spillway to determine whether or not section is safe under extra H of 2.51.

 If not safe reinforce front of dam with concrete.

Purpose of the above is to pass a reasonable design flood without washing out the westerly portion, as occurred in 1955, resulting in material damage not only to Gilbert and Bennett but to other properties and highway structures downstream.

Enclosed are two photographs, photo of general data notes and print of revised Recurrence Curve for Conn. Formula.

Yours very truly,

JWC/dr Enc: 2 photographs 2 prints

GEN. NOTES \$/20/63 Max Q mittons our toggrang

Old Spilling 1050 efs. with H= 2.7 Prosent " 2250 " + H = 4.6 55 Flood. 3100 " on 8± 59. mis by US65 " = 400 to per sq mi on 8 opmi Waters & me 12.1 sq.ms at dan 4800 C.fo. (400x12) at dam Rough Q prob. some too high for dam:
4000 c.f.s with Ho7 minimum 55 Fland Proposed Spillingy MAF 850 c.f.s with CBES by Conc Rough " Check 810 " world aver of 8 shows sheds Min Design R = 4000 cfs 5 = 0.66% chance (150pp) 4800 - 6 = 0.5 % " (200 pt) 55 R 12" Total pracp. Danbury at 14-17 incl's & 9,6 Derby. " Stanford. " 13.8 9"

Proces of 9" Prob may in 24.4+1011 1 1259.m. and 7% (150 yr)

But prob hearly man runoff because of antecedents with swamps and brooks fall.

1° por hrow 125.m 7,680 Cf5 1 100% runoff.

1910

SECTION B-B

		PLATE 2									
	STORCH ENGINEERS WETHERSFIELD, CONNECTICUT	U.S. ARMY ENGINEER DIV. NEW ENGLAND CORPS, OF ENGINEERS WALTHAM MASS.									
	NATIONAL PROGRAM OF INSPECTION OF NON-FED.										
	FACTORY POND DAM										
NOT TO SCALE		SCALE: AS SHOWN DATE: JULY 1980									

APPENDIX C

PHOTOGRAPHS

PHOTO 1

DOWNSTREAM FACE OF DAM

PHOTO 2

DOWNSTREAM FACE OF DAM

PHOTO 3

DOWNSTREAM CHANNEL

PHOTO 4

DOWNSTREAM CHANNEL

PH0T0 5

SEEPAGE THROUGH WEST SPILLWAY ABUTMENT PH0T0 6

PHOTO 7
DOWNSTREAM CHANNEL

PHOTO 8

SCREEN & DIVERSION INTAKE

UPSTREAM FACE OF DAM

C-IV

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

NATIONAL PROGRAMOF INSPECTION OF NON-FED. DAMS

FACTORY POND DAM

scale 1:24000

SCALE: AS SHOWN DATE JULY 1980

JOB Phase	I Dam_	Inspection - #4463
SHEET NO.		9
CALCULATED BY	<u> </u>	G DATE 7/11/86
		PATE 7/15/80
_		

Determination of Test Flood NAME OF DAM Factory Pond Dam DRAINAGE AREA 12.2 SM INFLOW 1/2 PMF = 1/2 (16-60 ×12.2) = 9636 cfs Estimating the effect of surcharge storage on the Maximum Probable Discharges 1. $q_{P1} = 9640$ cfs 2a. $H_1 = 9.8^{\circ}$ (elev.) b. $STOR_1 = 9.315^{\circ}$ c. $q_{P2} = q_{P1} (1 - STOR_1/1q) = 9480$ cfs 3a. $H_2 = 9.6^{\circ}$ b. $STOR_4 = 9.300$ Test Flood = 9.330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $q = 2.500$ cfs or 2.7° % of the Test Flood			CHECKED BY EDC DATE //15/80
NAME OF DAM. Factory Pond Dam. DRAINAGE AREA 12.2 SM INFLOW /2 PMF = /2 (1560 Y12.2) = 9638 c/s Estimating the effect of surcharge storage on the Maximum Probable Discharges 1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9.8$ (elev.) b. $STOR_1 = 9.315$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/1q) = 9480$ cfs 3a. $H_2 = 9.6$ $STOR_2 = 6.30$ b. $STOR_3 = 9.30$ cfs D. $STOR_4 = 9.30$ cfs Test Flood = 9.330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or 2.7 % of the Test Flood			Determination of Test Flood
DRAINAGE AREA 12.2 SM INFLOW $\frac{1}{2}$ PMF = $\frac{1}{2}$ (16 60 ×12.2) = 9638 cfs Estimating the effect of surcharge storage on the Maximum Probable Discharges 1. $\frac{1}{2}$ PMF = 96 0 cfs 2a. $\frac{1}{4}$ PMF = 98 (elev.) b. $\frac{1}{2}$ STOR ₁ = 9.8 (elev.) c. $\frac{1}{2}$ STOR ₂ = 0.30 b. $\frac{1}{2}$ STOR ₃ = 0.30 b. $\frac{1}{2}$ STOR ₄ = 9.30 Cfs H _A = 9.7" STOR ₄ = 9.307 Test Flood = 9.330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $\frac{1}{2}$ STOR ₄ = 0.300 cfs or 27 % of the Test Flood	NAME OF DAM	Factoria Pand Dam	
INFLOW $\frac{1}{2}$ PMF = $\frac{1}{2}$ (1.5 60 ×12.2) = 9638 C/s. Estimating the effect of surcharge storage on the Maximum Probable Discharges 1. $\frac{1}{2}$ PMF = $\frac{9.81}{2}$ (elev.) b. $\frac{1}{2}$ Color PMF = $\frac{9.81}{2}$ (elev.) c. $\frac{1}{2}$ PMF = $\frac{9.81}{2}$ (elev.) b. $\frac{1}{2}$ Color PMF = $\frac{9.81}{2}$ (elev.) b. $\frac{1}{2}$ Color PMF = $\frac{9.81}{2}$ (elev.) c. $\frac{1}{2}$ PMF = $\frac{9.81}{2}$ (elev.) b. $\frac{1}{2}$ STOR ₁ = $\frac{9.82}{2}$ Color PMF = $\frac{9.82}{2}$ Soft the Test Flood	, MAME OF DAIN	actory I once sum	
INFLOW $1/2$ PMF = $1/2$ (1.5 60 ×12.2) = 9638 C/s. Estimating the effect of surcharge storage on the Maximum Probable Discharges 1. $0_{P1} = 9640$ cfs 2a. $1 = 98$ (elev.) b. $1 = 235$ cfs c. $0_{P2} = 0_{P1} = 1.5 = 0.315$ cfs 3a. $1 = 9.6$ STOR ₁ = 9.6 STOR ₂ = 0.30 b. $1 = 0.307$ STOR ₃ = 9.7 STOR ₄ = 9.307 Test Flood = 9.330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $0 = 2600$ cfs or 27 % of the Test Flood	DPATNAGE AREA		
Estimating the effect of surcharge storage on the Maximum Probable Discharges $1. Q_{P1} = \underbrace{-9640}_{S} \underbrace{-\text{cfs}}_{C}$ $2a. H_1 = \underbrace{-9.8}_{S} \underbrace{-\text{(elev.)}}_{C}$ $b. STOR_1 = \underbrace{-0.315}_{S} \underbrace{-\text{cts}}_{S}$ $c. Q_{P2} = Q_{P1} (1 - STOR_1/q) = \underbrace{-9480}_{S} \underbrace{-\text{cfs}}_{S}$ $3a. H_2 = \underbrace{-9.6}_{S} \underbrace{-\text{STOR}_2}_{S} = \underbrace{-0.30}_{S} \underbrace{-\text{cfs}}_{S}$ $0_{PA} = \underbrace{-9.330}_{S} \underbrace{-\text{cfs}}_{S}$ $-\frac{1}{1} \underbrace{-\text{cfs}}_{S} = \underbrace{-0.307}_{S} \underbrace{-\text{cfs}}_{S}$ $-\frac{1}{1} \underbrace{-\text{cfs}}_{S} = \underbrace{-0.307}_{S} = $	DIVITINGE TIME.	12.2 SM	
Estimating the effect of surcharge storage on the Maximum Probable Discharges $\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Estimating the effect of surcharge storage on the Maximum Probable Discharges $1. Q_{P1} = \underbrace{-9640}_{S} \underbrace{-\text{cfs}}_{C}$ $2a. H_1 = \underbrace{-9.8}_{S} \underbrace{-\text{(elev.)}}_{C}$ $b. STOR_1 = \underbrace{-0.315}_{S} \underbrace{-\text{cts}}_{S}$ $c. Q_{P2} = Q_{P1} (1 - STOR_1/q) = \underbrace{-9480}_{S} \underbrace{-\text{cfs}}_{S}$ $3a. H_2 = \underbrace{-9.6}_{S} \underbrace{-\text{STOR}_2}_{S} = \underbrace{-0.30}_{S} \underbrace{-\text{cfs}}_{S}$ $0_{PA} = \underbrace{-9.330}_{S} \underbrace{-\text{cfs}}_{S}$ $-\frac{1}{1} \underbrace{-\text{cfs}}_{S} = \underbrace{-0.307}_{S} \underbrace{-\text{cfs}}_{S}$ $-\frac{1}{1} \underbrace{-\text{cfs}}_{S} = \underbrace{-0.307}_{S} = $	INFLOW 1/-	2 PMF = 1/2 (1580 X)	22) = 9638 cts
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 98$ (elev.) b. $STOR_1 = 035$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.30$ $Q_{PA} = 9.7$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or 2.7 % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 98$ (elev.) b. $STOR_1 = 035$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.30$ $Q_{PA} = 9.7$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or 2.7 % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9640$ cfs b. $STOR_1 = 935$ (elev.) c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.64$ STOR ₂ = 0.30 b. $STOR_A = 0.307$ $Q_{PA} = 9.30$ Cfs $H_A = 9.7$ STOR _A = 9.307 Test Flood = 9.300 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2000$ cfs or 2.7 % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9.8'$ (elev.) b. $STOR_1 = 0.315''$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6'$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.330$ C \neq s $H_A = 9.7''$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or $2.7'$ % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9.8'$ (elev.) b. $STOR_1 = 0.315''$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6'$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.330$ C \neq s $H_A = 9.7''$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or $2.7'$ % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9.8'$ (elev.) b. $STOR_1 = 0.315''$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6'$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.330$ C \neq s $H_A = 9.7''$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or $2.7'$ % of the Test Flood	T		
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9.8'$ (elev.) b. $STOR_1 = 0.315''$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6'$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.330$ C \neq s $H_A = 9.7''$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or $2.7'$ % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9.8'$ (elev.) b. $STOR_1 = 0.315''$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6'$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.330$ C \neq s $H_A = 9.7''$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or $2.7'$ % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 9.8'$ (elev.) b. $STOR_1 = 0.315''$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6'$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.330$ C \neq s $H_A = 9.7''$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or $2.7'$ % of the Test Flood			
1. $Q_{P1} = 9640$ cfs 2a. $H_1 = 98$ (elev.) b. $STOR_1 = 035$ c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6$ S $TOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.30$ $Q_{PA} = 9.7$ S $TOR_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or 2.7 % of the Test Flood	Estimating the	effect of surcharge storage (on the Maximum Probable Discharges
$2a. H_1 = \underline{ \ \ } 9.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
$2a. H_1 = \underline{ \ \ } 9.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1	9/2 HD Cfs	
b. $STOR_1 = 0.315$ '' c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6$ ' $STOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.7$ '' $STOR_A = 9.307$ Test Flood = 9.7 '' $STOR_A = 9.307$ Test Flood = 9.330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2.500$ cfs or 2.7 % of the Test Flood			
b. $STOR_1 = 0.315$ '' c. $Q_{P2} = Q_{P1} (1 - STOR_1/19) = 9480$ cfs 3a. $H_2 = 9.6$ ' $STOR_2 = 0.30$ b. $STOR_A = 0.307$ $Q_{PA} = 9.7$ '' $STOR_A = 9.307$ Test Flood = 9.7 '' $STOR_A = 9.307$ Test Flood = 9.330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2.500$ cfs or 2.7 % of the Test Flood	2a.	$H_{-} = 9.8'$ (elev.)	
c. $Q_{p2} = Q_{p1} (1 - STOR_1/ q) = 9480$ cfs 3a. $H_2 = 9.6'$ STOR $_2 = 0.30$ b. STOR $_A = 0.307$ $Q_{PA} = 9.7''$ STOR $_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2600$ cfs or 27 % of the Test Flood			
c. $Q_{p2} = Q_{p1} (1 - STOR_1/ q) = 9480$ cfs 3a. $H_2 = 9.6'$ STOR $_2 = 0.30$ b. STOR $_A = 0.307$ $Q_{PA} = 9.30$ CFs $H_A = 9.7''$ STOR $_A = 9.307$ Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam $Q = 2.00$ cfs or 2.7 % of the Test Flood	þ.	STOR ₁ =	
$3a. H_2 = 9.6' STOR_2 = 0.30$ $b. STOR_A = 0.307$ $Q_{PA} = 9.330 CFS$ $H_A = 9.330 CFS$ $Test Flood = 9.330 CFS$ $Capacity of the spillway when the pond elevation is at the top of the dam Q = 2.500 CFS DT = 2.7 S DF The Test Flood$			auen
b. $STOR_A = 0.307$ $0_{PA} = 9.30 \text{ CFs}$ $H_A = 9.7'' \text{ STOR}_A = 9.307$ $Test Flood = 9.330 \text{ Cfs}$ $Capacity of the spillway when the pond elevation is at the top of the dam 0 = 2.500 \text{ cfs or } 2.7' \text{ % of the Test Flood}$	•••	$Q_{P2} = Q_{P1} (1 - Siuk_1/19 / -$	7700 CIS
b. $STOR_A = 0.307$ $0_{PA} = 9.30 \text{ CFs}$ $H_A = 9.7'' \text{ STOR}_A = 9.307$ $Test Flood = 9.330 \text{ Cfs}$ $Capacity of the spillway when the pond elevation is at the top of the dam 0 = 2.500 \text{ cfs or } 2.7' \text{ % of the Test Flood}$	3a.	н = '9.6'	STOR_ = 0.30
$Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$ $\text{Test Flood} = 9.330 \qquad \text{cfs}$ $\text{Capacity of the spillway when the pond elevation is at the top of the dam}$ $Q_{pA} = 9.330 \qquad \text{CFs}$ $Q_{pA} = 9.307$ $Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$ $Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$ $Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$			
$Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$ $\text{Test Flood} = 9.330 \qquad \text{cfs}$ $\text{Capacity of the spillway when the pond elevation is at the top of the dam}$ $Q_{pA} = 9.330 \qquad \text{CFs}$ $Q_{pA} = 9.307$ $Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$ $Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$ $Q_{pA} = 9.7'' \qquad \text{STOR}_{A} = 9.307$	b.	$STOR_A = 0.307$	
Test Flood = $\frac{9.330}{2500}$ cfs Capacity of the spillway when the pond elevation is at the top of the dam $0 = \frac{2500}{2500}$ cfs or $\frac{27}{3}$ % of the Test Flood			
Test Flood = $\frac{9.330}{2500}$ cfs Capacity of the spillway when the pond elevation is at the top of the dam $0 = \frac{2500}{2500}$ cfs or $\frac{27}{3}$ % of the Test Flood		0 _{PA} = 7.330 C+5	
Test Flood = 9330 cfs Capacity of the spillway when the pond elevation is at the top of the dam Q = 2500 cfs pr 27 % of the Test Flood		н = 9.7"	STOR = 0,307
Capacity of the spillway when the pond elevation is at the top of the dam Q = 200 cfs or 27 % of the Test Flood		''A	
Capacity of the spillway when the pond elevation is at the top of the dam Q = 2500 cfs or 27 % of the Test Flood		0000	
Q = 2500 cfs or 27, % of the Test Flood	Test Flood	= <u>7550</u> cfs	
0 = 2500 cfs or 27, % of the Test Flood		<u> </u>	
Q = 2500 cfs or 27, % of the Test Flood	Capacity of th	one snillway when the pond elev	ation is at the top of the dam
	oapacroj o		
D-1		Q = 2500 cfs or _	27 % of the Test Flood
D-1			
	•	D-1	

_{JOB} Phase	I Dam	Inspection	4463
SHEET NO.	2	OF	9
CALCULATED BY	910	DATE	4/16/80
CHECKED BY BD	۷	DATE	7/15/80

											<u>Д</u> ув о	EA -	CAD	ידי מ	η·V				
Namo o	F	Dam -	E	٠ ۸	000	(C)								nod		:	ì		
Name c	JΙ	pam:	Γ,	ACI(, ארו ג	1-0	N/D	ردا	AM									: <u> </u>	
		27.7	1			<u> </u>	<u> </u>										<u>.</u>	<u>.</u>	
as all the bootening of the co	ELF		1	DE.	PTH		J	REA			AVG.	AREA	:	VO:	L		E V		
	Ο,	٥				*******	1	16.5						ļ			G	0.0	
				1,	0			<u></u>			16.	8		16	.ප				
	1.0)					/	7.0		<u> </u>							16	. B	:
				10	٥.٥	1					20	,9		20	D 9	1			
,	1, ()					,	24.8	}								22	(0]
		T																	······································
	E),	ev(P)	N						i										
1	<u> </u>	=V (T)	U				v												
-//			-			<u> </u>			-	-								ļ	
			ļ											<u>:</u>		<u> </u>		-	
10			ļ					1						/				 	
					ļ		<u> </u>				_								
9					ļļ		ļ <u>.</u>				<u> </u>			ļ			<u> </u>	ļ	
					1								^						,
8										į						-			
														;		: :	; ;		
									†										
7										/		.,, .,							
			-		<u> </u>		-												
-6		el- le	<u> </u>		<u> </u>					·	.				! <u> </u>				
	‡				<u> </u>				<u> </u>					·	ļ ļ			<u> </u>	
-5			ļ.,		ļ			<u> </u>							ļ İ.				
					ļ				ļ.,					÷					
4				.,	ļ., i.,													 	
		Ì,				/ .							<u> </u>			1			
	:																		
3																	!		
	<u>-</u> -	***************************************				1													
3						· · · · · · · · · · · · · · · · · · ·			1 1				<u>i</u>						
			<u> </u>			-	ļ ļ		-				<u>;</u>						
			<u> </u>		-	i			1		<u>.</u>								
	/				<u> </u>						1 - 1			1	nan ta				
oK		- 							<u> </u>		<u> </u>						·		
Q		20	40) 6	0	ව ර	100		20	1410	/60	180	<u>, a</u>	ου	23	ა	240	<u> </u>	
		: :	I					1					i	-i	ļ			ļ <u> </u>	
	:	*		14		O	apo	icitu	1 0	Ac-P	5		. 118						
		:	;			. :			₹ :	1		:		! ;				:	. 1

Jos Phase	I Dam	Inspection	4463
SHEET NO.	3	OF	01
		TP DATE_	4/28/80
		DATE_	
Stac	e Dis	charge	

·· ·									60	CALE	St	age	נע	LSCI	larç	e					
NAME (OF DAI	м	FA	10	TOR	Y		1		1	:				:					:	
ssuned							. ()=CI	_H 3∕2							:	1	:			:
100.00		Spil:	lway	<u> I</u>					vay					,	Dam	i					
Elev	С	Ļ	H	<u> </u>	Q	C	;	L	H		Q	(2	L		H	C	2		ĮΩ	T(
<u> </u>	2.61	75	0	5	69					<u> </u>		2	68	6	<u>o' </u>	35	<u> </u>	32			
	2.66		1	0	199							2	68			.45		126	<u> </u>		
	2.78			5-	3 83			1			<u> </u>	2	.67			1,35	ٺ	40			
	2 85	V	ے,	0	605							2	66			1.85		N			
	2.87		2	5	. 850							2.	72		1	ر کر3 ہے		587			
	3,20		3,	0	1250							2,	73			2.85	1 .	06			
	3.32		3.	<u>`</u>	1630							2.	76		····	3 35	10	15			
			4.	0	19 92			ļ				2.	79	ļ		3 89		-65			
DepTh			4	5	23 77		į	<u> </u>			ļ	2	. 88			4.35	1 15	68			<u>.</u>
Jepire 10	, , , , , , , , , , , , , , , , , , ,		4.	65	24.97						<u> </u>					*					
		,	5-,	0	27 84						ļ	} 		/					<u></u>		
9			5.	5	32 /2			<u> </u>		/	İ										ļ.,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	./	6.	0	36 60			ļļ				K									
4		/			41 26														······································		
	/		7.	0	46 12			/		-1070	4	! !									
7	/_		7,	5	5114			/			Ĺ							1			
			1.	0	5634							: : :									
	1		8.	5	4170					ļ	ļ										
	1		9.	0	413										<u> </u>	···					<u>.</u>
ź	<u> </u>		1!								ļ	i [
			/	/						_		<u> </u>	TOP	آف و	10	an E	/ 33	3.6		<u> </u>	
y			X								<u> </u>										-
								<u> </u>							<u> </u>						_
	1							-			1						1				<u></u>
	/	1-5pi	Hway	/							9						-				
4		- 1	1 (:							10				<u> </u>			i			
	/							ļ			1/1		ļ			<u>.</u>				<u>i</u>	
	1-									ļ											-
		<u> </u>	1					- 1													
		2013				_				-	-	<u> </u>		,	_	_		Ele	v3:	280	
		000 2,	000		4,0	00		6,0	00		8,0	000			10,00	SQ					
						1		_	-3		:, . i					1.					<u>.</u>

Project F	acto	ry 90	nd	— Dam					-)esig	ned	By:	87 (ا څ	Date:	7/3/60
Town: Ge									_							7/15/50
HYDROLOGIC AND CHANNEL INFORMATION Downstream Culvert under Factory Plant Q1 = 2x2'pier TW1 = TW2 = (Q = DESIGN DISCHARGE, SAY Q25 Q2 = CHECK DISCHARGE, SAY Q50 OR Q100)							Y	SKETCH STATION: 50 distribution EL. So 3% L = 150 MEAN STREAM VELOCITY = MAX. STREAM VELOCITY = MAX. STREAM VELOCITY = MAX.								
CULVERT DESCRIPTION (ENTRANCE TYPE)	1/2 0	SIZE	INLET	CONT HW		UTLE		NTRO	L HV	TW ho LSo			CONTRO LLING N W	OUTLET VELOCITY	cost	COMMENTS
	500	5×,	.82	41.1	5		2.3		3,7			3.65				
	1000		1.3	6.5		1.8	3.7	4.3	니, 3				6.5			
	1500		2.1	10.5		41.0	4.8	4,9	4.9			ଟ୍-ା	10,5		 	
	2000		3.0	15.0		7.5	5.0	5,0	5.0			12.0	16.0			
	3000		6.0	30.0		16.3	<u>5,0</u>	5.0	5.0			20.5	30,0			
											<u> </u>					
										L		<u> </u>				
SUMMARY & RE	COMM	ENDAT	iONS.													

JOB 1/1/63 G16 7/3 80 CHECKED BY BDC 7/15/80

			SCALE			~
Downstreon Dept	o Calvert	Rating (Purue			
28						
26						
2-1						
22						
20						
7.6						
166						
144				/		
/2-						
ρ						
<u>e</u>		. /				
6						
η						
2						
0						
0	/000	2000 Discharge	saw (CAs)	4000	5000	640
		D)–4			

Phase	I Dam Inspect	ion - #4463
BHEET NO	6	OF / 9
CALCULATED BY_	KJP	DATE 7/3/80
CHECKED BY	DC	DATE 7/15/80

NAME OF DAM $FACTORY$ Section I at Dam 1. $S = \frac{192}{Acft} Acft$ 2. $Q_{P1} = 8/27 \text{ Wb} \sqrt{g}$ \sqrt{g} $\sqrt{3/2} = \frac{8}{27} (30) \sqrt{32.2} (23\%)^{\frac{3}{2}} = 5709$	
1. $S = \frac{192}{2.0} \frac{Acft}{Q_{P1}} = \frac{8}{27} \frac{Acft}{W_b} \sqrt{\frac{9}{9}} \sqrt{\frac{3}{2}} = \frac{9}{27} (30) \sqrt{\frac{32}{32}} = \frac{1}{23} \sqrt{\frac{23}{9}} = \frac{1}{27} \sqrt{\frac{23}{9}} = $	
Section 1 at Dam 1. $S = \frac{192}{2.00} \frac{Acft}{g} \sqrt{3/2} = \frac{9}{27} (30) \sqrt{32.2} (239)^{\frac{3}{2}} = 5709$	
1. $S = \frac{192}{2.0} \frac{Acft}{Q_{P1}} = \frac{8}{27} \frac{Acft}{W_b} \sqrt{\frac{9}{9}} \sqrt{\frac{3}{2}} = \frac{8}{27} (30) \sqrt{\frac{32.2}{32.2}} \sqrt{\frac{23.9}{23.9}} = 5709$	
1. $S = \frac{192}{2.0} \frac{Acft}{Q_{P1}} = \frac{8}{27} \frac{Acft}{W_b} \sqrt{\frac{9}{9}} \sqrt{\frac{3}{2}} = \frac{9}{27} (30) \sqrt{\frac{32}{32}} = \frac{1}{23} \sqrt{\frac{23}{9}} = \frac{1}{27} \sqrt{\frac{23}{9}} = $	
	c fs
Section II at	
4a. $H_2 = 8.9$ $A_2 = 225$ $L_2 = 800$ $V_2 = 4.1$	Acft
	10
b. $Q_{P2} = Q_{P1} (1-V_2/s) =5587$ cfs	
c. $H_2 = 8.9$ $A_2 = 225$	
$A_A = 225^{+7^2}$ $V_2 = 4.7$	Acft
Qp2 = 5709 (1-41/192) = 5587	
Section III at	
4a. $H_3 = 7.0$ $A_3 = 275$ $L_3 = 1000$ $V_3 = 6.3$	Acft
b. $q_{P3} = q_{P2} (1 - v_3/s) = 5393$ cfs	
c. H ₃ = 70 A ₃ = 275	
	Acft
Q _{P3} = 5587 (1+6.3/188) = 5400	
Section IV at	
4a. $H_A = 70'$ $A_A = 530$ $L_A = 2100$ $V_A = 26.0'$	Acft
c. H ₄ = 6.5! A ₄ = 500	,
$A_A = 5/5$ $V_A = 25.0'$	Acft
Qp4 = 5400 (1-25/182) = 4660	
74 3100(1 /184/ + 1880	
D-6	

STORCH ENGINEERS

Engineers - Landscape Architects
Planners - Environmental Consultants

JOB 4/4/63

SHEET NO. 6 OF 9

CALCULATED BY KJP DATE 7/3/80

CHECKED BY RDC DATE 5/15/80

SECTION TI rsT 800' Buillius n= ,035 Building 5 = 2% 4' 10 100 -25' R 3/3 5 1/2 A Q .1414 1.59 474 25 50 9,49 ż 2 17.5 125 5 2.92 2183 25 3.99 23.9 4777 25 200 8 6928 25 250 4,63 27.7 10 28.5 37034 20 125 1300 4.76 10.4 20 39.5 6.60 100,630 30 150 2550 17.0 18 16 12 10 Area -100 200 600 1200 1000 2,000 4000 8000 10,000 12,000 8,00 FIOW (cfs) D-7

										CH	CHECKED BY BDC								_ DATE_5/15/80								
												SCALE SA			10	N		11/_									
00	→ 70	100	0'1	des	/ s)	مدير	241				:																-
																			1	:	T		Ī				
							·	İ	Ì	Ī								-		· · · · · ·			†			· · · · · · · · · · · · · · · · · · ·	
					(.			: :							<u> </u>	ļ			1	1	10	•	<u>.</u>	<u>!</u>			
			abla					- 1						. i	-			<u> </u>	<u> </u>	<u></u>	۱۷	25		<u> </u>	1	ļ	
															+ ,			ļ	<u> </u>	<u>.</u>	ļ	į 4		ļ	ļ	ļ	
									\						/			ļ		51	ops	2_	=_	5	%	ļ	
											eg	$\exists I$						ļ		1	,	=	ے (25	_		
										į										į							
										į			į														
	L)		WP	>		A	:		R		1	73		S	3			V			Q					
	2	•		30		•	50			1.6	6	/.	405		,27	236			9.30	2			80)		ĺ	
	5	1 1		-0		1	175	i	ì	3.5	. !		303				***************************************		<i>5.</i> 2				67			-	
	8			10			-		Ī	3.7			42							1			:				-
	10						11 4						;			·	ļ		6.0				50	1		<u> </u>	t
	20		- 1	50			67)			4.5	0	2.	72	?			ļ	1	8.0	7	<u> </u>	12,	76	ļ	1	1	
	20			30		2	29	0									ļ				ļ		<u> </u>	<u> </u>	ļ	<u> </u>	,,
	- ·					:	:								<u> </u>	ļ	ļ	ļ	<u>.</u>	<u></u>	ļ		-		ļ	ļ	
14		ļļ														ļ	ļ				ļ		- 		ļ		
													<u>-</u> -,			ļ							ļ			ļ	ļ
6																											
7																			T			, ,		ļ::	1		
1										1								ļ	ļ						-		
7		-					 .					-	· ·		1			"سيسد	1								
+										<u>-</u>				1 res	لاشراع		<u> </u>	ļ			s cha	196	ν				
0											.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•							ام ک	,,,					ļ	
														ســـ					-			······································					ļ
8																		<u> </u>									
										-						<u> </u>			<u> </u>	<u> </u>				ļ.,			
,					/										<u> </u>				<u>.</u>								
] ر		/																									
1								l	ľ											e*1e4.e1-4-41		dana basara a sa			<u> </u>		-
			/ -									·····i				ļ	ļ ļ	<u> </u>	 				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>		<u> </u>
2	//	1-1																<u> </u>					-resternt-sede		<u> </u>		
	/		200	,			400	,	·····		600				00	red		ļ				en. b-4 45.					<u> </u>
9 L					İ	-	-		1		-		-		,												-
	:		2000				400	0			\$00			8,0				;	~ 0			12	900				
_	vellable from						. :			i.	D-8	Dis	cha	190		(f5)		į	f						1

STORCH ENGINEERS/STORCH ASSOCIATES

JOB - 414/63 9 9 SHEET NO .. K.IP 7/3/90 DATE_7/15/80

APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS